Adaptive Region Embedding for Text Classification

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Method of Region Embedding for Text Classification

To represent a text as a bag of properly identified “phrases” and use the representation for processing the text is proved to be useful. The key question here is how to identify the phrases and represent them. The traditional method of utilizing n-grams can be regarded as an approximation of the approach. Such a method can suffer from data sparsity, however, particularly when the length of n-gr...

متن کامل

A New Method of Region Embedding for Text Classification

To represent a text as a bag of properly identified “phrases” and use the representation for processing the text is proved to be useful. The key question here is how to identify the phrases and represent them. The traditional method of utilizing n-grams can be regarded as an approximation of the approach. Such a method can suffer from data sparsity, however, particularly when the length of n-gr...

متن کامل

Multi-Task Label Embedding for Text Classification

Multi-task learning in text classification leverages implicit correlations among related tasks to extract common features and yield performance gains. However, most previous works treat labels of each task as independent and meaningless onehot vectors, which cause a loss of potential information and makes it difficult for these models to jointly learn three or more tasks. In this paper, we prop...

متن کامل

A New Document Embedding Method for News Classification

Abstract- Text classification is one of the main tasks of natural language processing (NLP). In this task, documents are classified into pre-defined categories. There is lots of news spreading on the web. A text classifier can categorize news automatically and this facilitates and accelerates access to the news. The first step in text classification is to represent documents in a suitable way t...

متن کامل

Label embedding for text recognition

The standard approach to recognizing text in images consists in first classifying local image regions into candidate characters and then combining them with high-level word models such as conditional random fields (CRF). This paper explores a new paradigm that departs from this bottom-up view. In our approach, every label from a lexicon is embedded to an Euclidean vector space. We refer to this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence

سال: 2019

ISSN: 2374-3468,2159-5399

DOI: 10.1609/aaai.v33i01.33017314